|
Статьи автора
|
Корректная классификация земельных участков по их типам, например, таким как лесные, сельскохозяйственные, урбанизированные, водные объекты и прочие, относится к актуальным задачам дистанционного зондирования Земли и разработки геоинформационных технологий. Точность и надежность результатов такого категорирования имеют первостепенное значение для эффективного использования природных ресурсов, рационального землепользования и мониторинга состояния окружающей среды. В статье представлен подход к решению задачи категорирования земельных участков по спутниковым снимкам путем применения модифицированной стандартной модели сверточной нейронной сети. Основное внимание уделено модификации архитектуры сети с целью повышения точности классификации земельных участков. Авторами предложен подход к обучению и оптимизации сети с целью решения указанной задачи. Подробно рассматриваются этапы подготовки данных, включая предварительную обработку спутниковых изображений, их аннотирование и создание высококачественных обучающих выборок. Представленные подходы к обучению и оптимизации сети включают использование современных техник регуляризации, методов адаптивного обучения и стратегий балансировки классов, что позволяет эффективно обрабатывать как большие объемы данных, так и более ограниченные наборы специфической информации. Для проверки работоспособности подхода и получения значений показателей качества проведены эксперименты по обучению и тестированию модели на различных наборах данных спутниковых изображений. Результаты эксперимента позволяют считать, что точность категорирования, достигаемая на основе созданной модели, отвечает требованиям Федеральной службы государственной регистрации, кадастра и картографии для исследования отдаленных территорий на предмет пригодности земель для их рационального использования, и предлагаемый метод может применяться для решения практических задач. Читать дальше...
При управлении сложными проектами, связанными с разработкой и организацией производства инновационной продукции, на процесс принятия решений оказывает влияние множество ситуационных аспектов. Это усложняет оценку качества принимаемых решений, обычно многовариантных и требующих учета случайных воздействий. Значительный эффект в подобных случаях может обеспечить применение биоинспирированных методов, позволяющих находить приемлемое для конкретной ситуации решение, в которых для описания НЕ-факторов используются элементы теории нечетких множеств. В статье предложен обобщенный подход к созданию модели на основе указанных методов, которая предназначена для поддержки принятия решений по управлению инновационным проектом. Данная модель отличается комплексным применением нечетких биоинспирированных методов выбора и обоснования вариантов действий при стратегическом и оперативном планировании и ситуационном управлении проектной деятельностью с учетом общих и специфических характеристик этапов проекта, а также динамического характера внешних и внутренних факторов. На основе предложенного подхода разработан метод подбора оборудования, использующий концепцию нечетких множеств, для проведения опытно-конструкторских работ и организации производства инновационной продукции с использованием модели поведения стаи волков во время охоты. Метод отличается применением нечеткой евклидовой меры близости между показателями качества оцениваемых вариантов и выделенных трех наилучших на данной итерации (альфа-, бета- и дельта-решений) для определения направления поиска рационального набора оборудования, модификацией правил поиска решений (перемещения особей) на основе учета «глубины совпадений» и приращения эффекта, в том числе для нахождения разумного баланса между направленным и случайным поиском, и применением базы нечетких продукционных правил при выборе способа формирования основы для альфа-решения на последующих итерациях. Метод реализован на языке Python 3.12.0. Результативность предложенного подхода подтверждена данными проведенного вычислительного эксперимента. Читать дальше...
|