Предложены вероятностные модели прогнозирования и оценки достоверности навигационных параметров в интеллектуальных транспортных системах. Актуальность исследования обусловлена необходимостью повышения надежности роботизированных транспортных средств, работающих в динамически изменяющихся городских условиях. В таких средах возможны отказы датчиков, искажения сигналов и высокая степень неопределенности данных. Предложенный подход основан на применении методов вероятностного анализа и статистического контроля для выявления аномалий в навигационных параметрах, таких как координаты, скорость и ориентация. Введено понятие достоверности навигационных данных как количественного показателя, характеризующего степень соответствия измеренных параметров реальному состоянию системы. Определены ключевые критерии достоверности: доверительная вероятность, уровень значимости и доверительные коэффициенты. Для повышения надежности оценки параметров предложено сочетание статистических методов анализа и алгоритмов фильтрации. Прогнозирование включает предварительную обработку данных с целью сглаживания шумов и проверки их согласованности. Выявление выбросов осуществляется с помощью статистических методов, включая доверительные интервалы и минимизацию дисперсии. Разработана модель прогнозирования, основанная на фильтре Калмана и динамическом обновлении вероятностных оценок. Интеграция различных методов в единую систему позволяет минимизировать влияние случайных и систематических ошибок, обеспечивая более точную оценку навигационных параметров. Предложенный подход применим к разработке навигационных систем автономных роботов и беспилотного транспорта, позволяя им адаптироваться к внешним условиям без необходимости в точных априорных данных.
Ключевые слова
интеллектуальная транспортная система, вектор состояния, достоверность данных, вероятностный и статистический анализ, фильтр Калмана